
What Is It Language Guide 2.30 Key Words IDE New USB to Serial ESP8266 FAQ Error Codes

The Concept
This is a mix of C, BASIC and others language that sits on the microcontroller and offers the
following advantages that alter approach to development.

* The language is initially interpreted but any created functions are compiled thus you get all
the advantages of an interpreter such as instant results being able to examine actual
registers and memory addresses and being able to run individual functions. At the same time
when a function is created this is compiled and so is extremely fast as compared to a
standard interpreter.

* Because the functions are compiled and there is direct access to the registers there no
need to provide hardware type functions such as SPI or I2C as these can easily be created by
the user if and when required. There is now a suit of functions called rookie (see library) that
does just this.

* All functions are created as text either on the IC or downloaded as a text file. This gives the
user, any user, not just those with programming tools, the power to change and modify
existing code. The code is easy to read and sometimes all it takes is a minor modification to
make all the difference to a hardware project.

* Because everything is available it is very easy to carry out 'what if' scenarios. All of the code
is stored in RAM until the user decides to move it to Flash to be more permanent, even then it
can be erased later.

* As code is run on the actual IC itself this makes an ideal learning platform, setting and
reading registers, connecting other hardware to see the effects. The syntax uses C like
operators and so is a good starting point for learning other languages. It can be difficult to
understand what and how the registers effect the hardware modules from reading the data
sheet. Being able to change them and see the effects immediately greatly enhances this
procedure.

* Because the functions are compiled they are relatively fast and so useful for signal capture
and the like. Not as fast as a compiled language but much faster than normally interpreted
languages. The speed is approximately 500,000 lines per second. As the microcontroller
contains useful hardware modules often it is only necessary to provide the control so speed
is not such a great issue. PWM is a classic example where, once the module is set up, only a
register needs setting to control the output.

ByPic is an interactive compiled language designed for use with a microcontroller. It sits in
the microcontrollers Flash memory and can be extended by user input. It is a threaded

ByPic
High Speed Development

HomeHome DocumentationDocumentation TutorialsTutorials LibraryLibrary ProjectsProjects DownloadsDownloads AboutAbout

Search

Search
What Is It
Language Guide 2.30
Key Words
IDE New
USB to Serial
ESP8266
FAQ
Error Codes

External Links

Creative Science
Centre

 

http://www.bypic.co.uk/index.php/What_Is_It
http://www.bypic.co.uk/index.php/Language_Guide_2.30
http://www.bypic.co.uk/index.php/Key_Words
http://www.bypic.co.uk/index.php/IDE_New
http://www.bypic.co.uk/index.php/USB_to_Serial
http://www.bypic.co.uk/index.php/ESP8266
http://www.bypic.co.uk/index.php/FAQ
http://www.bypic.co.uk/index.php/Error_Codes
http://www.bypic.co.uk/index.php/
http://www.byvac.com/
http://www.bypic.co.uk/
http://www.bypic.co.uk/index.php/Documentation
http://www.bypic.co.uk/index.php/Tutorials
http://www.bypic.co.uk/index.php/Library
http://www.bypic.co.uk/index.php/Projects
http://www.bypic.co.uk/index.php/Downloads
http://www.bypic.co.uk/index.php/About
http://www.bypic.co.uk/index.php/What_Is_It
http://www.bypic.co.uk/index.php/Language_Guide_2.30
http://www.bypic.co.uk/index.php/Key_Words
http://www.bypic.co.uk/index.php/IDE_New
http://www.bypic.co.uk/index.php/USB_to_Serial
http://www.bypic.co.uk/index.php/ESP8266
http://www.bypic.co.uk/index.php/FAQ
http://www.bypic.co.uk/index.php/Error_Codes
http://www.creative-science.org.uk/main.html


language which takes text as input and then compiles this to the processor memory in the
form of addresses.

Why Use it

It can do anything C or other languages can do. The main advantage is that it is interactive
which means that you can inspect the microcontroller registers in real time. It is easy to use
and learn but most of all it is easy to experiment with. A big advantage is the speed of
development which is much faster than the code, compile, download method used in the
traditional systems. All development is done in RAM and if a particular function or set of
functions is used many times then it can, at any time, be saved to Flash. Only when the
function is fully developed and tested does it need to be saved to Flash - this is in complete
contrast to the code, compile, download method of working.

Another major advantage is that if a hardware constructional project is presented, the code
can be changed if required by the final user because all that is required is text.

The basis of the language is functions. These are built in and can also be created by the user.
A function to say read a GPS, once written and debugged can be saved to flash and then
used in an application. An application simply consists of many functions called by a main
function – exactly the same as C.

The main advantage here though, is that any function can be called at any time (interactively)
so the GPS function for example can be called form the terminal to read the data and check
if it is working or returning the expected data. This makes programming much easier and
more fun.

What Can It Do

Microcontrollers are configured and operated through their registers. ByPic allows direct
access to these. For example to examine the contents of a register at memory
address 0xbf886040 simply use peek or if it is defined:

constant PORTA 0xbf886040

print @PORTA

The above will print out the register contents. Similarly setting interrupts times and all of the
other peripherals uses a similar technique. This gives the same control over registers as you
have in C or assembler but with the immediacy of being able to manipulate, set and see
them.

In addition to all of this there are floating point data types and other data types for holding
co-ordinates for touch screens.

Speed

This is an not an interpreted language and its not a compiled language language in the
conventional sense. To explain; a conventional compiler takes the code as text and then
creates code that is downloaded into the microcontrollers Flash memory. This language will



take the source text and compiles it into addresses. When the program is running the
addresses are executed one by one, these addresses point directly to machine code and thus
the program runs as fast as the address pointer can point and run the addresses.

Benchmarking on an 80MHz processor shows that the program executes at in excess of
400,000 lines per second. It depends of course what the 'line' is doing but this equates
approximately to 2.5uS per line.

Because the internals of the program 'runs addresses' if a further increase of speed is
required a C or assembler function can be written and this can be run, this is called a C
Plugin.

What Does It Run On

At he moment it is only compiled for running on the PIC32 and then it will only load via the
boot loader provided with the ByVac PIC32 microcontrollers. There is no reason why this
cannot run on other microcontrollers providing there is at least 256k Flash and 32k RAM.
There is a cut down version (no SD Card interface) that requires approximately 100KB. As of
August 2012 this is now available of the PIC32MX1 family that only has 128k Flash. This
version is not boot loaded but permanently resided in theMX1 Flash. There is still room for
about 2000 lines of user code.

How does it work

All ByPic devices have a serial link which is the main method of communication. The user
can type directly into the device or pre-prepare functions in a program editor. When ByPic
receives the function it will check the syntax and compile it into RAM as shown. There are
many predefined functions and if any are encountered then the address of the encountered
function is also compiled into the user function. A dictionary of functions is maintained
by mB, if a function is not defined and it is used then an error will occur. As an example a
predefined function is hex$() which converts a number into a string in hex format. This could
be defined by the user but as it is used quite often it is one of the built in functions.

If the user as part of a user function uses hex$() then ByPic will search through the dictionary
and when found will compile its address into the user functions. This scheme is self
perpetuating as when a user defines a new function, that too can be used in further
functions.

http://www.byvac.com/


Saving

The main point of this scheme is to enable the user to built up a list of functions appertaining
to the required project. In this way the project can be verified, experimented with and than
ultimately released. A robot arm for example could have a function called wrist(degrees).
This would be a use function and calling wrist(20) would turn the wrist 20 degrees. This can
be typed in at the keyboard to verify everything was okay. A complete set of these functions
could be saved and then higher level functions could use them; e.g pick_up(item).

To carry out the above ByPic can save the user functions to Flash and they simply become
part of the language and can be used in the same way as the hex$() function example given
above. This also leaves the RAM free to develop further functions. Another advantage is that
as the application grows the loading time does not as all of the tried and tested functions are
in Flash.

History
Introduction

This language has been developed on the experience and feedback from the original
BV_Basic. The primary use is for microcontrollers that have limited resources and require
hardware control. The language is built on the following principles:

Interactive: the user should be able to interact with the connected hardware, trying
out different things without the need for a lengthy compile and download.

Tools: no special tools should be required so that it can be used with any host that
supports a serial port.

Extensible: the language supports user functions that allow the language itself to
be extended to fit the user application. This is done by the use of functions that are
written an can be saved to Flash.

Fast: nearly all of the error checking is carried out at compile time. This means that
running code only needs minimal error checking. The code can be saved as a list of
addresses that enables the fastest possible interpreted language.



Background

This language came about because of my interest in Forth. For those who have never heard
of this language it was invented in the 1960's by Charles Moore
(http://en.wikipedia.org/wiki/Charles_H._Moore). Back then compilers were just beginning to
be invented and nobody knew the best way to program computers. The concepts that Forth
used were remarkable and in my opinion still are. It has a sort of elegance that no other
language has, this is because there is a very close link to the way in which computers work
and the way in which the language works.

When I first discovered this language (1970's) it looked full of promise. Migrating from
assembler to Forth felt like going from a Mini to a Rolls Royce the power was truly amazing.
There was a speed penalty but it was well worthwhile. It was a difficult language to learn but
that was offset because you could achieve a considerable amount only knowing how a small
portion of the language works.

The downfall, for me anyway, was the actual code; the text which forms the code. There was
a joke that Forth is write only; its not a joke its true. Because Forth puts efficiency above
everything else the programmer needs to do a lot of mental manipulation of code elements,
in Forth's case the stack mainly. This leads to code that is easier to re-write than modify.
Ways round this have been proposed such as writing the code in very small chunks. Anyway
its not my intention to knock the most interesting language ever invented.

Having fallen out with Forth initially I kept going back to it time and time again in cycles of a
few years. Initially thinking this is such a great language and then realising why I had left it
before. So what’s wrong? Well, when I can't understand something I wrote in Forth only 6
months ago there must be a better way? I have been thinking about this for some years and
have made a few half hearted attempts at solving the problems associate with Forth but
never got anywhere.

Here is a list of Forth Language good and bad points

Good points

Interactive

Comparatively fast

Extensible

Bad Points

Unreadable code

Only one data type

Difficult parameter passing

All global – difficult to modularise

http://en.wikipedia.org/wiki/Charles_H._Moore


Interactivity has to be the main strength, to be able to see variables there and then and to be
able to control some machine by typing a few words just can't be beaten, particularly in a
learning environment and for me that's all of the time.

Forth is quite fast for an interactive language, not as fast as C or assembler but not that far
behind, some simple tests show that it is about 7 times slower which is not bad particularly
when hardware is getting faster all of the time.

Extensible is probably not the correct word to use, Forth is extensible in that it has defining
words (a word in forth is the unit of language like a function) that enable other words to be
written as if creating another language. This facility, although very cleaver is not much use, if
it were, the modern languages would have it – its simply not needed but at the time who
knew that? Even so the way that an application is put together is a kind of extensibility as the
user words effectively become part of the language.

As mentioned before no matter what effort is made the code is unreadable. Even writing very
small words doesn’t help much as you still have to pass information from one word to the
next and there is only that stack or global variables to do that. Two main contributors to
unreadable code is the lack of local variables so you have to manipulate the stack and the
second is not having a 'writeable' (so it can be read back) method of passing data into and
out of words.

In The Beginning

I am sure that everybody who has come into contact with Forth for an extended time thinks
about 'Fifth' its a language just begging to be improved, building upon such a great concept.
The idea is to have something like Forth but without the cumbersome syntax. One idea is to
write a new language using Forth; the Forth will interpret the new syntax and make Forth
words from the new syntax words. For example

print "fred"

The above could be interpreted in forth and the output would be something like ." fred" type.
On the face of it this looks quite promising and in fact C. Moore did actually produce a BASIC
compiler using Forth. Another advantage is that the compiling could be done outside the
target, but wait! This is simply a BASIC like compiler of which there are many. This does not
have the interactivity of Forth and so this option is a none starter.

Having started with something like this idea and over many iterations what is the result?
What is the difference between a standard tokenising interpreter an ByPic? On a tokenising
interpreter the text file which is the BASIC or other language source code is broken down into
tokens, the tokens represent elements of the language that are stored in an efficient manner,
'print' for example may be stored as a single byte. When the program is executed, an
interpreter converts the tokens into meaningful instructions and then depending on what they
are will eventually call a functions that actually does the work. If we convert this effort into
time we have:



Part 1 convert text to tokens (interpret time)

Part 2 convert tokens into functions (run time)

The way ByPic works is nearly that all the effort is spent on Part 1 and instead of converting
the BASIC code into tokens it converts the code into actual function addresses and so 'print
"fred"' would be  stored as the address of the actual print function followed by the text "fred".
The effect of this is to remove the time taken in part 2 to interpret anything. It also means
that at any time a function created can be run independently and so making testing and
debugging easier.

Site Map Login

http://www.bypic.co.uk/index.php/Site_Map
http://www.bypic.co.uk/index.php/Admin?file=What_Is_It

